首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65348篇
  免费   5472篇
  国内免费   3312篇
电工技术   3204篇
技术理论   1篇
综合类   3993篇
化学工业   14701篇
金属工艺   14477篇
机械仪表   5920篇
建筑科学   4753篇
矿业工程   1666篇
能源动力   1862篇
轻工业   3885篇
水利工程   897篇
石油天然气   2075篇
武器工业   567篇
无线电   2902篇
一般工业技术   8808篇
冶金工业   3074篇
原子能技术   383篇
自动化技术   964篇
  2024年   192篇
  2023年   1310篇
  2022年   1950篇
  2021年   2471篇
  2020年   2235篇
  2019年   1956篇
  2018年   1958篇
  2017年   2561篇
  2016年   2356篇
  2015年   2365篇
  2014年   3337篇
  2013年   3509篇
  2012年   4216篇
  2011年   4803篇
  2010年   3564篇
  2009年   3852篇
  2008年   3163篇
  2007年   4020篇
  2006年   4013篇
  2005年   3294篇
  2004年   2885篇
  2003年   2359篇
  2002年   2026篇
  2001年   1739篇
  2000年   1477篇
  1999年   1192篇
  1998年   995篇
  1997年   849篇
  1996年   715篇
  1995年   666篇
  1994年   503篇
  1993年   373篇
  1992年   319篇
  1991年   221篇
  1990年   166篇
  1989年   150篇
  1988年   96篇
  1987年   59篇
  1986年   40篇
  1985年   28篇
  1984年   31篇
  1983年   25篇
  1982年   26篇
  1981年   10篇
  1980年   14篇
  1979年   5篇
  1976年   3篇
  1960年   3篇
  1959年   8篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
Since the inception of blockchain-related technologies over a decade ago, investors’ uptake of the technologies has grown rapidly. But even with the advancement in standing from conceptual beginnings to real-world experimentation, mainstream adoption of the technologies in either organizational or individual contexts has yet to eventuate. To resolve this paradox, we examine progression of the technologies’ diffusion instead, and in the process, seek to uncover the underlying dynamics of sentiments at play. Diffusion involves multiple actions by different parties, with social discourses via diverse media playing an essential role. In demonstrating the interplay of support to resistance via media framing and the diffusion of innovation theory, findings from our paper contribute to the technology adoption literature. Understanding resistant behavior toward a new technology area could help resolve potential issues that may arise. This would hopefully lead to better technological implementation outcomes in future.  相似文献   
42.
Mg-Zn-Nd alloy is a promising biodegradable metal material for surgical staples during the reconstruc-tion of digestive tract due to its good biocompatibility and suitable mechanical properties.However,its deformation property and corrosion resistance should be improved to make better safety and effective-ness of staples.In the present study,bi-direction drawing was adopted to maintain the initial texture characteristics,and improve mechanical property and corrosion resistance of Mg-2Zn-0.5Nd alloy.The results showed that the microstructure after bi-direction did not change too much,but the texture could maintain its initial characteristics.The ductility of the alloy with 60 % accumulative area reduction after bi-direction drawing was increased by 70 %,indicating that an outstanding deformation property of Mg-Zn-Nd alloy can be obtained by bi-direction drawing.The corrosion resistance was also improved after bi-direction drawing compared with that under single direction drawing.  相似文献   
43.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
44.
Two types of MgO-C refractories with tight particle grading and non-tight particle grading were prepared according to Andreasen's continuous packing theory. Fracture behaviors were investigated using wedge splitting tests combined with digital image correlation method and acoustic emission techniques. The results indicated that MgO-C refractory with non-tight particle grading treated at 1400 ℃ had more in situ phases (e.g., AlN and MgAl2O4) and exhibited less brittleness than specimens with tight particle grading even though they had similar nominal tensile strengths. In contrast, specimens with non-tight particle grading had greater horizontal strain under various loading stages, reflecting their better ability to resist rupture deformation. In addition, more microcracks were initiated earlier in the pre-peak region, and more energy was consumed. The decrease in coarse particles and corresponding increase in fine powder content increased the interface between particles, benefiting for reducing the local stress concentration and improving the thermal shock resistance of refractories.  相似文献   
45.
《Ceramics International》2022,48(4):5229-5238
The uneven growth of thermally grown oxides (TGOs) in thermal barrier coating systems is an important cause of cracking failure at the coating interface in high-temperature environments. The doping of rare earth elements in the bonding layer can effectively inhibit the formation of spinel oxides in the TGO and improve the high-temperature oxidation resistance of the coating. However, a single rare earth element has a limited effect on inhibiting TGO failure. In this study, a NiCoCrAlYHf coating was prepared using a supersonic flame spraying (HVOF) technique. The effects of HfO2 doping on the high-temperature oxidation behaviour of the coatings and diffusion behaviour of metallic elements in the coatings were investigated at 1100 °C. The results showed that the nano-sized HfO2 filled the pores between the powder particles and improved the hardness of the coating. During the high-temperature oxidation process, the oxides formed by Hf and Y had a large size and low solubility, which effectively blocked the diffusion of Al. This slowed the generation of spinel oxides, effectively inhibited the growth of the TGO, it inhibits the initiation and propagation of cracks within the coating, reduces damage to the coating from tensile and compressive stresses at the interface, and improved the high-temperature oxidation resistance of the coating.  相似文献   
46.
47.
《Ceramics International》2022,48(1):548-555
Silica-based ceramic cores are widely utilized for shaping the internal cooling canals of single crystal superalloy turbine blades. The thermal expansion behavior, creep resistance, and high temperature flexural strength are critical for the quality of turbine blades. In this study, the influence of zircon, particle size distribution, and sintering temperature on the high-temperature performance of silica-based ceramic cores were investigated. The results show that zircon is beneficial for narrowing the contraction temperature range and reducing the shrinkage, improving the creep resistance and high-temperature flexural strength significantly. Mixing coarse, medium and fine fused silica powders in a ratio of 5:3:2, not only reduced high temperature contraction, but effectively improved the creep resistance. Properly increasing the sintering temperature can slightly reduce the thermal deformation and improve the high-temperature flexural strength of the silica-based core, but excessively high sintering temperature negatively impacts the creep resistance and high-temperature flexural strength.  相似文献   
48.
《Ceramics International》2022,48(11):15144-15151
A novel micro-nano-structured Cr3C2–NiCr cermet coating was prepared on 316L stainless steel by high-velocity oxygen fuel spraying technology (HVOF). Cermet coatings with different contents of micro-and nano-sized Cr3C2 particles as the hard phase and a NiCr alloy matrix as the bonding phase were prepared and characterized in terms of porosity, microhardness, and corrosive wear resistance in a 3.5% NaCl solution and artificial seawater. Compared to nanostructured coatings, micro-nano-structured coatings avoid decarburization and reduce nanoparticle agglomeration during the spray process, and mechanical and electrochemical properties were improved in comparison with those of conventional coatings. The micro-nano-structured Cr3C2–NiCr coating rendered low porosity (≤0.34%) and high microhardness (≥1105.0HV0.3). The coating comprising 50% nano-sized Cr3C2 grains exhibited the best corrosive wear resistance owing to its densest microstructure and highest microhardness. Furthermore, compared to static corrosion, the dynamic corrosion of the coatings led to more severe mechanical wear, because corrosion destroyed the coating surface and ions promoted corrosion to invade coatings through the pores during corrosion wear.  相似文献   
49.
《Ceramics International》2022,48(20):30052-30065
The present work is attempted to improve the microhardness and wear properties of AISI 1020 steel by depositing TiB2–Fe composite coating using tungsten inert gas (TIG) cladding. In this study, different compositions of TiB2–Fe paste form were preplaced on the substrate plates and then TIG heat input was applied to deposit hard composite coating layer. The main objective of the present work was to explore the influence of TIG input current as well as iron content on the microstructure and surface properties of deposited coatings. Microhardness, microstructural and phase characterization of the coating have been done by the Vickers microhardness tester, scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS) and X-ray diffractrometer (XRD). The results showed that the microhardness of the TiB2–Fe coating was strongly influenced by the composition of the coating materials as well as the TIG processing current. The microhardness increases with decreasing Fe contents in the coating materials with constant processing current (90 A) as well as it also increases with decreasing processing current with the fixed composition of coating materials (80TiB2–20Fe). The maximum average microhardness found was 3082 HV0.1 for the coating of 100TiB2–0Fe composition ratio and 90 A processing current which was about 18 times higher than that of the substrate average microhardness value (163 HV0.1). Average wear rate evaluated by considering weight loss of the TIG cladded samples using pin on disc tribometer by the sliding distance of 864 m and 20 N normal loads. The wear results also showed that the coating contains 100 wt% of TiB2 (0 wt% of Fe) exhibited lower rate of wear 6.74 × 10?8 g/Nm which is about 24 times lower as compared to AISI 1020 mild steel wear rate (166.31 × 10?8 g/Nm).  相似文献   
50.
《Ceramics International》2022,48(6):7864-7875
Based on the ultrasonic C-scan results of 8YSZ coatings after thermal cycles, three-dimensional cylindrical numerical simulations of the physical geometry model of the thermal barrier coating (TBC) sinusoidal surfaces were conducted with finite elements to estimate the stress distribution and evolution law of the top coat (TC)/bond coat (BC) interface, including the centre and edge of the specimen affected by the dynamic growth of the thermally grown oxide (TGO). The results show that when a layer of TGO is grown on the TC/BC interface, compressive stress is uniformly distributed on the TGO interface, and the stress value decreases as a function of the TGO layer thickness. When the thickness of the TGO exceeds a certain value, the compressive stress of all parts of the interface gradually changes to tensile stress; meanwhile, the edges of the model affected by the crest and trough effects of the wave are reflected in the radial and circumferential directions, especially along the axial direction, with alternating concentrated tensile and compressive stresses. TGO growth imposes a minor influence on the magnitude and distributions of the radial and circumferential stresses at the BC interface. The linear elasticity, creep, fatigue, and stress accumulation effects of each layer of TBCs in each thermal cycle were fully considered in this model. The model not only interprets the crest and trough effects of the TC/BC surface interface during the growth of TGO, but also interprets the effects of the core and edge of the cylindrical model, further revealing the reason for which the core and edge of the TBC will most likely form cracks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号